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copper(II) distorts the site that adopts the usual 4 + 2 geometry 
with an apparent lengthening of the Cu-N(CS) apical bonds. 

Rao et al.6 detected the HS ** LS transition with EPR spec­
troscopy on a guest ion, by preparing Mn-doped [Fe(phen)2-
(NCS)2] and [Fe(pic)3]Cl2-EtOH (pic = 2-(aminomethyl)pyridine. 
However, only a broadening of the EPR resonance lines at the 
transition temperature was observed. 

The present study surprisingly shows that it is quite possible 
to detect the HS *-*• LS transition in an iron compound by fo­
cussing on the EPR spectrum of a doped species, which acts as 
a "spy" to get information about the spin state of the host lattice. 
A copper(II) may be used in other systems. So, an effect com­
parable to that described above was observed for a Cu(II) doped 
[Fe(I-propyltetrazole)6](BF4)2. Other EPR active ions may also 
be utilized. Preliminary results indicate that the EPR spectrum 
of a Mn(II) doped [Fe(NCS)2(btr)2] (H2O) also shows an abrupt 
change at T0. The now described method of detecting spin 
crossover phenomena is not restricted to magnetically coupled 
systems. Detailed information on these two systems will be 
presented in later work. 
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Discrete molecular clusters containing interstitial carbon atoms 
are now well known,1 and the structural types observed mimic 
some of the solid state carbides. Although all clusters with in­
terstitial atoms thus far identified contain electron precise, e.g., 
C, or electron rich, e.g., N, O,2 atoms, there is no a priori reason 
why boron should not be found as an interstitial element in 
transition-metal clusters. Indeed metal borides are well known 
in the solid state3 and exhibit a variety of structural types con­
taining periodic units of one or more boron atoms. In the fol­
lowing, we present definitive evidence for the formation of a species 
containing a bare boron partially surrounded by metal atoms which 
is isoelectronic with an exposed iron carbide cluster.4 

The exhaustive deprotonation of a metal-rich metallaborane 
provides an obvious route to a boride. However, small boranes 
are not known for ease of deprotonation.5 The same is true of 
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Figure 1. Infrared spectra of (a) I, (b) II, (c) III, and (d) IV (A small 
amount of III is present.). 

hydrocarbons, but the presence of a transition metal alters the 
situation considerably. For example, H Fe4(CO) l2CH yields a 
carbido cluster dianion on double deprotonation,6 and we have 
already reported the facile single deprotonation of HFe4(C-
O)12BH2,1, the isoelectronic analogue of HFe4(CO)12CH.7 The 
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PPN salt of [HFe4(CO)12BH]", II, resists further attempts at 
deprotonation, but we have now found that multiple deprotonation 
of I with butyllithium or further deprotonation of the alkali metal 
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salts of II provide direct, high yield routes to the di- and trianions. 
Treatment of the sodium salt of II with 1.2 equiv of butyllithium 

results in complete conversion (90% yield) to the lithium-sodium 
salt of [Fe4(CO)12BH]2", IH.8 Likewise, treatment of I with 2 
equiv of butyllithium at -15 0C in THF for 45 min gives a 94% 
yield of the dilithium salt of the same dianion. Addition of another 
1 equiv of butyllithium to the dianion results in the loss of the 
11B and 1H signals due to the dianion with the production of no 
other signals. However, the solution remains homogeneous, and 
the infrared spectrum shows a shift in the CO bands to lower 
frequency suggesting the formation of [Fe4(CO)12B]3", IV (Figure 
1). Although IV is 11B silent, a fact we presently attribute to 
very rapid relaxation of the boron nucleus in the trianion,9 pro-
tonation of a solution of IV with CF3COOH results in the pro­
duction of I in 80% yield. Indeed, the protonations/deprotonations 
are completely reversible. In going from I to IV there is a uniform 
shift of =50 cm"1 to lower energy as the three protons of I are 
sequentially removed (Figure 1). In addition, the infrared spectra 
suggest that the basic "butterfly" structure of I is retained on 
deprotonation. Note that IV is isoelectronic with [Fe4(CO)12C]2" 
which has been structurally characterized10 and which has a very 
similar infrared spectrum. The 1H NMR demonstrates the order 
of proton removal: FeHB followed by FeHFe followed by FeHB. 
The 11B NMR chemical shifts corroborate this observation. Loss 
of the first proton from I creates an additional direct FeB in­
teraction and a 34 ppm downfield shift occurs in going from I 
to II.11 Loss of the FeHFe proton in going to III leaves the boron 
in virtually the same environment, and the chemical shifts of II 
and III are also nearly the same. 

As the new anions are potentially significant precursors for 
cluster modification and expansion, we are beginning to explore 
the synthetic opportunities provided. For example, although II 
is unreactive with CH3I at 60 0C for 4 h, reaction of III with CH3I 
proceeds smoothly at 25 0C in THF to produce a quantitative (by 
NMR) yield of [HFe4(CO)12BCH3]-, V.12 The spectroscopic 
data is consistent with V having a tetrahedral metal core similar 
to that found in the isoelectronic [Fe4(CO)12CCH3]"; however, 
confirmation awaits crystallographic characterization.13'14 Clearly, 
there is considerable scope for cluster modification via these anions. 

When a monoborane is placed in a metal-rich environment, its 
properties are dramatically changed from those of the free bo-
rane.15 The ability to completely deprotonate a monoboron 
hydride must result from its interaction with the transition metals 
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to which it is bound. The metal carbonyl fragments act as sinks 
to "absorb" the excess negative charge produced on deprotonation, 
and it is the multinuclear metal character of the cluster that 
permits multiple deprotonation.16 This is another illustration of 
the potential usefulness of transition metals in systematically 
varying the properties and reactivity of main group species. 
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Recent efforts in our laboratory have been directed toward the 
syntheses of new pyrrolyl and pyrrole complexes of the first row 
group VIII transition metals via the metal atom reactor.2,3 We 
have previously reported a conceptually novel metalation reaction 
at the iV-hydrogen of pyrrole and the pyrrole functionality with 
iron and cobalt.1 This facile metalation reaction has proved to 
be synthetically useful in expanding the number of pyrrolyl-metal 
complexes available including the syntheses of new bis(?;1-
pyrrolyl)iron(II) octahedral complexes and a synthetically useful 
Fe/pyrrolyl reagent.4 We communicate here a new synthesis for 
(a,/3,7,i5-tetraphenylporphinato)iron(II) (abbreviated FeTPP), 
demonstrating that the reactivity of iron metal with pyrrole can 
be extended to the pyrrole functionality in larger molecules. 

By using the metal vapor reaction outlined in Scheme I, FeTPP 
was synthesized in excellent yield as the metalloporphyrin ex­
cluding any axial ligands. 

In many metal atom reactor syntheses it is desirable to si­
multaneously cocondense metal vapor with a reactive substrate 
vapor or a mixture of solvent and substrate vapors. The result 
is an efficient distribution of the reactive metal in a frozen matrix. 
This is necessary to minimize metal agglomeration upon meltdown 
and effect a greater product yield. In our previously reported 
reactions of iron and cobalt with pyrrole, we found the direct 
cocondensation of the metal and pyrrole vapors to be the most 
effective in product formation. Unfortunately, in extending the 
facile reaction of iron metal to the TV-hydrogen of the pyrrole 
functionality in a,/3,7,5-tetraphenylporphine (abbreviated H2TPP), 
adequate sublimation of the porphyrin as a cocondensable solid 
is not experimentally feasible. Therefore, addition of a toluene 
solution of H2TPP into a reactive iron/toluene slurry at low 
temperature was chosen as an alternate reaction pathway. 

In step 1, we take advantage of the excellent solvating power 
of toluene toward metal atoms at low temperature.5 A frozen 
iron/toluene matrix formed from the cocondensation of iron and 
toluene vapors at liquid nitrogen temperature is warmed to -94.6 
0C by using an acetone/liquid nitrogen slush. At the slush tem­
perature, the frozen matrix melts down as a reactive iron/toluene 
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